Elementary proofs of infinite families of congruences for Merca’s cubic partitions

نویسندگان

چکیده

Recently, using modular forms and Smoot’s Mathematica implementation of Radu’s algorithm for proving partition congruences, Merca proved the following two congruences: all \(n\ge 0,\)$$\begin{aligned} A(9n+5)&\equiv 0 \pmod {3}, \\ A(27n+26)&\equiv {3}. \end{aligned}$$Here, A(n) is closely related to function which counts number cubic partitions, partitions wherein even parts are allowed appear in different colors. Indeed, defined as difference between n into an numbers odd parts. In this brief note, we provide elementary proofs these congruences via classical generating manipulations. We then prove infinite families non-nested Ramanujan-like modulo 3 satisfied by Merca’s original serve initial members each family.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elementary proofs of congruences for the cubic and overcubic partition functions

In 2010, Hei-Chi Chan introduced the cubic partition function a(n) in connection with Ramanujan’s cubic continued fraction. Chan proved that ∑ n≥0 a(3n+ 2)q = 3 ∏ i≥1 (1− q3n)3(1− q) (1− qn)4(1− q2n)4 which clearly implies that, for all n ≥ 0, a(3n+ 2) ≡ 0 (mod 3). In the same year, Byungchan Kim introduced the overcubic partition function a(n). Using modular forms, Kim proved that ∑ n≥0 a(3n +...

متن کامل

New Infinite Families of Congruences Modulo 8 for Partitions with Even Parts Distinct

Let ped(n) denote the number of partitions of an integer n wherein even parts are distinct. Recently, Andrews, Hirschhorn and Sellers, Chen, and Cui and Gu have derived a number of interesting congruences modulo 2, 3 and 4 for ped(n). In this paper we prove several new infinite families of congruences modulo 8 for ped(n). For example, we prove that for α > 0 and n > 0, ped ( 3n+ 11× 34α+3 − 1 8...

متن کامل

Computational Proofs of Congruences for 2-colored Frobenius Partitions

1. Background and introduction. In his 1984 Memoir of the American Mathematical Society, Andrews [2] introduced two families of partition functions, φk(m) and cφk(m), which he called generalized Frobenius partition functions. In this paper, we will focus our attention on one of these functions, namely cφ2(m), which denotes the number of generalized Frobenius partitions of m with 2 colors. In [2...

متن کامل

Elementary Proofs of Identities for Schur Functions and Plane Partitions

By a plane partition, we mean a finite set, P , of lattice points with positive integer coefficients, {(i, j, k)} ⊆ N, with the property that if (r, s, t) ∈ P and 1 ≤ i ≤ r, 1 ≤ j ≤ s, 1 ≤ k ≤ t, then (i, j, k) must also be in P . A plane partition is symmetric if (i, j, k) ∈ P if and only if (j, i, k) ∈ P . The height of stack (i, j) is the largest value of k for which there exists a point (i,...

متن کامل

Elementary Proofs of Parity Results for 5-regular Partitions

In a recent paper, Calkin et al. [N. Calkin, N. Drake, K. James, S. Law, P. Lee, D. Penniston and J. Radder, ‘Divisibility properties of the 5-regular and 13-regular partition functions’, Integers 8 (2008), #A60] used the theory of modular forms to examine 5-regular partitions modulo 2 and 13-regular partitions modulo 2 and 3; they obtained and conjectured various results. In this note, we use ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ramanujan Journal

سال: 2022

ISSN: ['1572-9303', '1382-4090']

DOI: https://doi.org/10.1007/s11139-022-00660-7